论文标题

相对论湍流磁重新连接期间的磁能释放,等离子体动力学和颗粒加速度

Magnetic Energy Release, Plasma Dynamics, and Particle Acceleration during Relativistic Turbulent Magnetic Reconnection

论文作者

Guo, Fan, Li, Xiaocan, Daughton, William, Li, Hui, Kilian, Patrick, Liu, Yi-Hsin, Zhang, Qile, Zhang, Haocheng

论文摘要

在强烈磁化的天体血浆系统中,磁重新连接被认为是爆炸能量释放和颗粒加速的主要过程,从而导致明显的高能量发射。过去几年见证了相对论磁重新连接的动力学建模的积极发展,支持了这种磁性主导的情况。一个不太探索的问题是3D动力学的结果,随着各种类型的不稳定性的发展,湍流结构是自然产生的。本文介绍了一系列的3D,全动作的模拟,这些模拟对正电子 - 电子等离子体中的相对论湍流磁重新连接(RTMR),其系统域比动力学尺度大得多。我们的模拟从无力的电流板开始,具有多种不同的长波长磁场扰动,这些模式在重新连接区域驱动额外的湍流。因此,当前层分解,重新连接区域迅速演变成一个充满连贯结构(例如通量绳索和电流板)的湍流层。我们发现,RTMR中的等离子体动力在许多方面与它们的2D对应物大不相同。磁通绳在世代后迅速发展,由于次要扭结不稳定性,可能会完全破坏。这种湍流的演化导致磁场线的超排水行为,如湍流重新连接的MHD研究所见。同时,非热粒子加速度和能量释放时​​间尺度可能非常快,并且不强烈取决于湍流振幅。主要的加速机制是一个像费米一样的加速过程,该加速度工艺由运动场支持,而非理想的电场加速度则起着亚军作用。我们讨论了3D RTMR在高能天体物理学中的可能的观察意义。

In strongly magnetized astrophysical plasma systems, magnetic reconnection is believed to be a primary process during which explosive energy release and particle acceleration occur, leading to significant high-energy emission. Past years have witnessed active development of kinetic modeling of relativistic magnetic reconnection, supporting this magnetically dominated scenario. A much less explored issue is the consequence of 3D dynamics, where turbulent structures are naturally generated as various types of instabilities develop. This paper presents a series of 3D, fully-kinetic simulations of relativistic turbulent magnetic reconnection (RTMR) in positron-electron plasmas with system domains much larger than kinetic scales. Our simulations start from a force-free current sheet with several different modes of long wavelength magnetic field perturbations, which drive additional turbulence in the reconnection region. Because of this, the current layer breaks up and the reconnection region quickly evolves into a turbulent layer filled with coherent structures such as flux ropes and current sheets. We find that plasma dynamics in RTMR is vastly different from their 2D counterparts in many aspects. The flux ropes evolve rapidly after their generation, and can be completely disrupted due to the secondary kink instability. This turbulent evolution leads to superdiffusion behavior of magnetic field lines as seen in MHD studies of turbulent reconnection. Meanwhile, nonthermal particle acceleration and energy-release time scale can be very fast and do not strongly depend on the turbulence amplitude. The main acceleration mechanism is a Fermi-like acceleration process supported by the motional electric field, whereas the non-ideal electric field acceleration plays a subdominant role. We discuss possible observational implications of 3D RTMR in high-energy astrophysics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源