论文标题
可见的红外人重新识别的基于双高斯的分流子空间分离
Dual Gaussian-based Variational Subspace Disentanglement for Visible-Infrared Person Re-Identification
论文作者
论文摘要
在夜间智能监视系统中,可见的红外人员重新识别(VI-REID)是一项具有挑战性且重要的任务。除了RGB-RGB人重新识别的模式内差异外,VI-REID还遭受了固有异质间隙引起的其他模式间差异。为了解决该问题,我们提出了一个经过精心设计的基于双高斯的变异自动编码器(DG-VAE),该自动编码器(DG-VAE)在遵循高斯(Mog)的混合物(MOG)之前和标准的高斯高斯分布之后,将身份歧视的身份歧视和身份歧义性的跨模式子空间分别出现。解开跨模式身份可见的特征可为VI-REID提供更强大的检索。为了实现像常规VAE这样的有效优化,我们从理论上得出了在监督环境下的MOG先验的两个变异推理术语,这不仅限制了身份歧视的子空间,因此该模型可以显式地处理交叉模式的内置性差异,而且还可以使MOG分布避免后部磨损。此外,我们提出了三联交换重建(TSR)策略,以促进上述解散过程。广泛的实验表明,我们的方法在两个VI-REID数据集上优于最先进的方法。
Visible-infrared person re-identification (VI-ReID) is a challenging and essential task in night-time intelligent surveillance systems. Except for the intra-modality variance that RGB-RGB person re-identification mainly overcomes, VI-ReID suffers from additional inter-modality variance caused by the inherent heterogeneous gap. To solve the problem, we present a carefully designed dual Gaussian-based variational auto-encoder (DG-VAE), which disentangles an identity-discriminable and an identity-ambiguous cross-modality feature subspace, following a mixture-of-Gaussians (MoG) prior and a standard Gaussian distribution prior, respectively. Disentangling cross-modality identity-discriminable features leads to more robust retrieval for VI-ReID. To achieve efficient optimization like conventional VAE, we theoretically derive two variational inference terms for the MoG prior under the supervised setting, which not only restricts the identity-discriminable subspace so that the model explicitly handles the cross-modality intra-identity variance, but also enables the MoG distribution to avoid posterior collapse. Furthermore, we propose a triplet swap reconstruction (TSR) strategy to promote the above disentangling process. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on two VI-ReID datasets.