论文标题

彩虹跨越树木中的极端问题

An Extremal Problem on Rainbow Spanning Trees in Graphs

论文作者

DeVilbiss, Matthew, Fain, Bradley, Holmes, Amber, Horn, Paul, Mafunda, Sonwabile, Perry, K. E.

论文摘要

只要它的每个边缘都会收到独特的颜色,彩虹就有一个边缘颜色图的生成树。在本文中,我们考虑了自然的极端问题,即在图$ g $中最大化跨越树木的彩虹数量。这样的问题显然需要对颜色有意义的限制。对于使用$ n-1 $颜色的边缘色,没有彩虹循环,在文献中称为JL颜色,事实证明,有一种特别好的计算彩虹跨越树木的方式,我们完全解决了JL色的完整图形$ k_n $和完整的biptite Graphs $ k_ $ k_ {n,m} $。在这两种情况下,我们都会发现上限和下限。尤其是$ k_n $的下限证明具有出乎意料的混乱和有趣的行为。我们进一步研究了一个通用图的JL色彩的问题,并证明了几个结果,包括表征具有JL色的图形,可实现最低的彩虹跨树木数量。我们为一般$ n-1 $颜色建立了其他结果,包括提供Kirchoff的Matrix Tree Theorem的类似物,该定理产生了一种在一般图$ g $中计数彩虹跨越树木的方法。

A spanning tree of an edge-colored graph is rainbow provided that each of its edges receives a distinct color. In this paper we consider the natural extremal problem of maximizing and minimizing the number of rainbow spanning trees in a graph $G$. Such a question clearly needs restrictions on the colorings to be meaningful. For edge-colorings using $n-1$ colors and without rainbow cycles, known in the literature as JL-colorings, there turns out to be a particularly nice way of counting the rainbow spanning trees and we solve this problem completely for JL-colored complete graphs $K_n$ and complete bipartite graphs $K_{n,m}$. In both cases, we find tight upper and lower bounds; the lower bound for $K_n$, in particular, proves to have an unexpectedly chaotic and interesting behavior. We further investigate this question for JL-colorings of general graphs and prove several results including characterizing graphs which have JL-colorings achieving the lowest possible number of rainbow spanning trees. We establish other results for general $n-1$ colorings, including providing an analogue of Kirchoff's matrix tree theorem which yields a way of counting rainbow spanning trees in a general graph $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源