论文标题
自由边界问题的分叉对小动脉斑块进行建模
Bifurcation for a free boundary problem modeling a small arterial plaque
论文作者
论文摘要
动脉粥样硬化(动脉硬化)起源于动脉中的小斑块。在美国和全球,这是残疾和过早死亡的主要原因。在本文中,我们研究了高度非线性和高度耦合的PDE模型的分叉,该模型描述了动脉粥样硬化早期的动脉斑块的生长。该模型涉及LDL和HDL胆固醇,巨噬细胞和泡沫细胞,界面将斑块分开,血流区域是自由边界。我们建立了对称性固定溶液的有限分支,这些分支是从径向对称溶液分叉的。由于现实的斑块不太可能是严格的径向对称性,因此我们的结果对于解释斑块的不对称形状很有用。
Atherosclerosis, hardening of the arteries, originates from small plaque in the arteries; it is a major cause of disability and premature death in the United States and worldwide. In this paper, we study the bifurcation of a highly nonlinear and highly coupled PDE model describing the growth of arterial plaque in the early stage of atherosclerosis. The model involves LDL and HDL cholesterols, macrophage cells as well as foam cells, with the interface separating the plaque and blood flow regions being a free boundary. We establish finite branches of symmetry-breaking stationary solutions which bifurcate from the radially symmetric solution. Since plaque in reality is unlikely to be strictly radially symmetric, our result would be useful to explain the asymmetric shapes of plaque.