论文标题
量子全息图的稀疏模型
A Sparse Model of Quantum Holography
论文作者
论文摘要
我们研究了由随机修剪程序或通过随机采样常规超图构建的随机超图定义的Sachdev-Ye-Kitaev(Syk)模型的稀疏版本。所得模型具有一个新的参数,$ k $,定义为哈密顿量与自由度的术语数量的比率,其稀疏极限对应于固定$ k $的热力学极限。我们认为,即使$ k $是订单统一,这种稀疏的SYK模型即使恢复了普通SYK的有趣全球物理。特别是,在低温下,模型表现出最大混乱的引力部门。我们的论点是通过为稀疏模型组成的路径积分来进行的,该模型重现了常规的SYK路径积分和间隙波动。该模型的稀疏性允许比以前可能更大的数值计算,其结果与路径积分分析一致。此外,我们表明该模型的稀疏性大大降低了量子模拟算法的成本。这使得稀疏SYK模型成为模拟量子重力全息模型的当前最有效的途径。我们还定义和研究了稀疏的超对称SYK模型,其结论与非苏匹配病例相似。展望未来,我们认为这里考虑的一类模型构成了量子多体物理学中有趣且相对尚未开发的稀疏边界。
We study a sparse version of the Sachdev-Ye-Kitaev (SYK) model defined on random hypergraphs constructed either by a random pruning procedure or by randomly sampling regular hypergraphs. The resulting model has a new parameter, $k$, defined as the ratio of the number of terms in the Hamiltonian to the number of degrees of freedom, with the sparse limit corresponding to the thermodynamic limit at fixed $k$. We argue that this sparse SYK model recovers the interesting global physics of ordinary SYK even when $k$ is of order unity. In particular, at low temperature the model exhibits a gravitational sector which is maximally chaotic. Our argument proceeds by constructing a path integral for the sparse model which reproduces the conventional SYK path integral plus gapped fluctuations. The sparsity of the model permits larger scale numerical calculations than previously possible, the results of which are consistent with the path integral analysis. Additionally, we show that the sparsity of the model considerably reduces the cost of quantum simulation algorithms. This makes the sparse SYK model the most efficient currently known route to simulate a holographic model of quantum gravity. We also define and study a sparse supersymmetric SYK model, with similar conclusions to the non-supersymmetric case. Looking forward, we argue that the class of models considered here constitute an interesting and relatively unexplored sparse frontier in quantum many-body physics.