论文标题

Glodyne:全球拓扑保存动态网络嵌入

GloDyNE: Global Topology Preserving Dynamic Network Embedding

论文作者

Hou, Chengbin, Zhang, Han, He, Shan, Tang, Ke

论文摘要

在动态环境中学习网络的低维拓扑表示,由于许多现实世界网络的随着时间的变化性质,吸引了很多关注。动态网络嵌入(DNE)的主要和共同目标是有效地更新节点嵌入,同时在每个时间步骤中保留网络拓扑。大多数现有DNE方法的想法是在受影响最大的节点(而不是所有节点)上捕获拓扑变化,并因此更新节点嵌入。不幸的是,这种近似值虽然可以提高效率,但由于不考虑接收通过高阶接近传播的累积拓扑变化的不活动子网络,因此无法有效地保留动态网络的全局拓扑。为了应对这一挑战,我们提出了一种新的节点选择策略,以通过网络多样化选择代表性节点,该节点与基于跳过的嵌入方式的新的增量学习范式协调。广泛的实验表明,闪光,选择了一小部分节点,已经可以实现出色或可比的性能W.R.T.三个典型下游任务中的最新方法。特别是,Glodyne在图形重建任务中的其他方法显着优于其他方法,这证明了其全球拓扑保存的能力。源代码可从https://github.com/houchengbin/glodyne获得

Learning low-dimensional topological representation of a network in dynamic environments is attracting much attention due to the time-evolving nature of many real-world networks. The main and common objective of Dynamic Network Embedding (DNE) is to efficiently update node embeddings while preserving network topology at each time step. The idea of most existing DNE methods is to capture the topological changes at or around the most affected nodes (instead of all nodes) and accordingly update node embeddings. Unfortunately, this kind of approximation, although can improve efficiency, cannot effectively preserve the global topology of a dynamic network at each time step, due to not considering the inactive sub-networks that receive accumulated topological changes propagated via the high-order proximity. To tackle this challenge, we propose a novel node selecting strategy to diversely select the representative nodes over a network, which is coordinated with a new incremental learning paradigm of Skip-Gram based embedding approach. The extensive experiments show GloDyNE, with a small fraction of nodes being selected, can already achieve the superior or comparable performance w.r.t. the state-of-the-art DNE methods in three typical downstream tasks. Particularly, GloDyNE significantly outperforms other methods in the graph reconstruction task, which demonstrates its ability of global topology preservation. The source code is available at https://github.com/houchengbin/GloDyNE

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源