论文标题

同质轨道的不变流形和超智能的动态后果:(mathbb {r}^4)中的案例研究(Mathbb {z} _2) - 运动的积分和积分

Invariant manifolds of homoclinic orbits and the dynamical consequences of a super-homoclinic: A case study in (mathbb{R}^4) with (mathbb{Z}_2)-symmetry and integral of motion

论文作者

Bakrani, Sajjad, Lamb, Jeroen S. W., Turaev, Dmitry

论文摘要

我们考虑(Mathbb {Z} _2) - 具有运动积分和具有横向同质轨道(gamma)的双曲线平衡的(Mathbb {r}^{4})中的(Mathbb {r}^{4})中的(Mathbb {Z} _2) - 等级流。我们提供了(伽玛)稳定且不稳定的不变流形的标准。我们证明,如果这些歧管横向相交,创建了所谓的超级智能,那么在这种超智慧的任何社区中,都存在无限的多个多脉冲同层循环。考虑了耦合非线性schrödinger方程系统的应用。

We consider a (mathbb{Z}_2)-equivariant flow in (mathbb{R}^{4}) with an integral of motion and a hyperbolic equilibrium with a transverse homoclinic orbit (Gamma). We provide criteria for the existence of stable and unstable invariant manifolds of (Gamma). We prove that if these manifolds intersect transversely, creating a so-called super-homoclinic, then in any neighborhood of this super-homoclinic there exist infinitely many multi-pulse homoclinic loops. An application to a system of coupled nonlinear Schrödinger equations is considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源