论文标题
分层摊销培训用于记忆有效高分辨率3D GAN
Hierarchical Amortized Training for Memory-efficient High Resolution 3D GAN
论文作者
论文摘要
生成对抗网络(GAN)具有许多潜在的医学成像应用,包括数据扩展,域适应和模型解释。由于图形处理单元(GPU)的记忆有限,因此对当前的3D GAN模型进行了训练,因此在低分辨率的医学图像上训练,这些模型要么无法扩展到高分辨率,要么容易构成斑块。在这项工作中,我们提出了一种新颖的端到端GAN体系结构,可以生成高分辨率3D图像。我们通过使用训练和推理之间的不同配置来实现这一目标。在训练过程中,我们采用了层次结构,该结构同时生成了图像的低分辨率版本和高分辨率图像的随机选择子体积。层次设计具有两个优点:首先,对高分辨率图像训练的记忆需求在子卷中摊销。此外,将高分辨率子体积固定在单个低分辨率图像上可确保子0al量之间的解剖一致性。在推断期间,我们的模型可以直接生成完整的高分辨率图像。我们还将具有类似层次结构的编码器纳入模型中,以从图像中提取特征。 3D胸CT和脑MRI的实验表明,我们的方法在图像生成中的表现优于最新技术。我们还证明了所提出的模型在数据增强和临床相关特征提取中的临床应用。
Generative Adversarial Networks (GAN) have many potential medical imaging applications, including data augmentation, domain adaptation, and model explanation. Due to the limited memory of Graphical Processing Units (GPUs), most current 3D GAN models are trained on low-resolution medical images, these models either cannot scale to high-resolution or are prone to patchy artifacts. In this work, we propose a novel end-to-end GAN architecture that can generate high-resolution 3D images. We achieve this goal by using different configurations between training and inference. During training, we adopt a hierarchical structure that simultaneously generates a low-resolution version of the image and a randomly selected sub-volume of the high-resolution image. The hierarchical design has two advantages: First, the memory demand for training on high-resolution images is amortized among sub-volumes. Furthermore, anchoring the high-resolution sub-volumes to a single low-resolution image ensures anatomical consistency between sub-volumes. During inference, our model can directly generate full high-resolution images. We also incorporate an encoder with a similar hierarchical structure into the model to extract features from the images. Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation. We also demonstrate clinical applications of the proposed model in data augmentation and clinical-relevant feature extraction.