论文标题
使用神经网络和应用于洛杉矶国际机场道路网络的集成交通模拟预测系统
Integrated Traffic Simulation-Prediction System using Neural Networks with Application to the Los Angeles International Airport Road Network
论文作者
论文摘要
运输网络非常复杂,由于缺乏足够的测量数据和对交通状态的准确预测,因此很难设计高效的交通管理系统。流量模拟模型可以通过使用有限的可用流量数据来捕获运输网络的复杂动态,如果将适当的输入输入模拟器,可以帮助中央交通部门的决策。在本文中,我们设计了一个集成的仿真预测系统,该系统仅使用流量信息来估算道路网络的原始用途(OD)矩阵,并在不同的模拟方案中预测道路网络的行为。提出的系统包括一种基于优化的OD矩阵生成方法,一种神经网络(NN)模型,该模型通过交通流量模式和具有动态流量分配(DTA)方案的微观流量模拟器进行了训练,可预测运输系统的行为。我们在洛杉矶国际机场(LAX)的中央航站楼(CTA)的道路网络上测试了拟议的系统,该系统表明,可以使用集成的交通模拟预测系统来模拟几种真实世界的效果,例如车道关闭,路缘停车场和其他更改。该模型是学习网络变化的影响和可能益处的有效工具,并以非常低的成本分析场景而不会破坏网络。
Transportation networks are highly complex and the design of efficient traffic management systems is difficult due to lack of adequate measured data and accurate predictions of the traffic states. Traffic simulation models can capture the complex dynamics of transportation networks by using limited available traffic data and can help central traffic authorities in their decision-making, if appropriate input is fed into the simulator. In this paper, we design an integrated simulation-prediction system which estimates the Origin-Destination (OD) matrix of a road network using only flow rate information and predicts the behavior of the road network in different simulation scenarios. The proposed system includes an optimization-based OD matrix generation method, a Neural Network (NN) model trained to predict OD matrices via the pattern of traffic flow and a microscopic traffic simulator with a Dynamic Traffic Assignment (DTA) scheme to predict the behavior of the transportation system. We test the proposed system on the road network of the central terminal area (CTA) of the Los Angeles International Airport (LAX), which demonstrates that the integrated traffic simulation-prediction system can be used to simulate the effects of several real world scenarios such as lane closures, curbside parking and other changes. The model is an effective tool for learning the impact and possible benefits of changes in the network and for analyzing scenarios at a very low cost without disrupting the network.