论文标题
通过原子探针断层扫描估算蒸发场和特定热量
Estimating Evaporation Fields and Specific Heats Through Atom Probe Tomography
论文作者
论文摘要
尽管它们在重建和数据分析过程中的重要性,但原子探针层析成像(APT)文献中蒸发现场值的估计很少。这项工作描述了一种直接的方法,用于估计使用测量的电压与激光脉冲能量以恒定的蒸发速率,该方法使用测量的电压与激光脉冲能。该估计值取决于曲率的样本半径及其特定热量($ C_P $)。如果针对固定蒸发率的测量电压与基本温度进行了类似的测量,则可以直接提取材料的$ C_P $,仅将曲率的样本半径作为输入参数。该方法用于从先前发布的电压与CDTE的激光脉冲能量数据集中提取$ f_e $($ 18.07 \ pm 0.87〜 \ mathrm {v〜nm^{ - 1}} $);此外,使用已发表的电压与CDTE的基本电压扫描允许提取特定的热量($ 11.27 \ pm 2.54〜 \ Mathrm {J〜K^{ - 1} mol^{ - 1}} $ $ 23.1〜 \ MATHRM {k} $),以符合文献的一致性。 ($ 11.14〜 \ MATHRM {J〜K^{ - 1} mol^{ - 1}} $ at $ 22.17〜 \ Mathrm {K} $)。然后将该方法应用于先前未表征的材料Tris [2-苯基吡啶甲酸-C2,N]虹膜(III)($ \ MATHRM {ir(ppy)_3} $),产生$ f_e = 7.49 \ pm 0.96〜 pm 0.96〜 \ pm nm^nm^nm^nm^pm {v〜nm^pm^pm 27〜 \ mathrm {j〜k^{ - 1} mol^{ - 1}} $;此$ f_e $远低于迄今为止易于使用的大多数材料。
Estimations of evaporation field values in atom probe tomography (APT) literature are sparse despite their importance in the reconstruction and data analysis process. This work describes a straightforward method for estimating the zero-barrier evaporation field ($F_E$) that uses the measured voltage vs. laser pulse energy for a constant evaporation rate. This estimate depends on the sample radius of curvature and its specific heat ($C_p$). If a similar measurement is made of the measured voltage vs. base temperature for a fixed evaporation rate, direct extraction of the material's $C_p$ can be made, leaving only the sample radius of curvature as an input parameter. The method is applied to extract $F_E$ from a previously published voltage vs. laser pulse energy dataset for CdTe ($18.07 \pm 0.87~\mathrm{V~nm^{-1}}$); furthermore, using the published voltage vs. base-temperature sweep of CdTe permits extraction of a specific heat ($11.27 \pm 2.54~\mathrm{J~K^{-1}mol^{-1}}$ at $23.1~\mathrm{K}$) in good agreement with the literature ($11.14~\mathrm{J~K^{-1}mol^{-1}}$ at $22.17~\mathrm{K}$). The method is then applied to the previously uncharacterized material tris[2-phenylpyridinato-C2,N]iridium(III) ($\mathrm{Ir(ppy)_3}$), yielding $F_E = 7.49 \pm 0.96~\mathrm{V~nm^{-1}}$ and $C_p = 173 \pm 27~\mathrm{J~K^{-1} mol^{-1}}$; this $F_E$ is much lower than most materials characterized with APT to date.