论文标题

pB尺度医学成像数据湖的高性能按需识别

High performance on-demand de-identification of a petabyte-scale medical imaging data lake

论文作者

Mesterhazy, Joseph, Olson, Garrick, Datta, Somalee

论文摘要

随着人工智能驱动方法的增加,研究人员正在要求史无前例的医学成像数据,这些数据远远超过了传统的本地客户服务器方法的能力,以使数据研究准备就绪。我们正在为按需去识别的灵活解决方案提供,将成熟软件技术与现代基于云的分布式计算技术相结合,以使医学成像研究中的转换更快。该解决方案是一个更广泛的平台的一部分,该平台支持安全的高性能临床数据科学平台。

With the increase in Artificial Intelligence driven approaches, researchers are requesting unprecedented volumes of medical imaging data which far exceed the capacity of traditional on-premise client-server approaches for making the data research analysis-ready. We are making available a flexible solution for on-demand de-identification that combines the use of mature software technologies with modern cloud-based distributed computing techniques to enable faster turnaround in medical imaging research. The solution is part of a broader platform that supports a secure high performance clinical data science platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源