论文标题

星系中暗物质的建议替代方案:I。理论考虑

A Suggested Alternative to Dark Matter in Galaxies: I. Theoretical Considerations

论文作者

Sabat, Hanna A., Bani-Abdoh, Raed Z., Mousa, Marwan S.

论文摘要

暗物质是天体物理学和宇宙学中普遍接受的范式,作为解决星系中较高旋转率的解决方案,以及许多其他原因。但是,由于标准的暗物质范式在银河尺度上仍然存在一些问题,因此我们采取了一种替代解决方案,类似于Milgrom修改的牛顿动力学(MOND)。在这里,我们假设:(i)重力常数g是距离(比例)的函数:g = g(r),或(ii)重力与惯性质量比,mg/mi,是距离(刻度)的函数(刻度):f(r)。我们使用了每个函数的线性近似,从中出现两个新参数必须确定:G1,重​​力耦合的一阶系数和C1,C1是重力惯性质量比的一阶系数。在本研究的当前部分中,我们通过改变参数来为某些假设的星系生成简化的理论旋转曲线。我们得出的结论是,我们的模型给出了这些参数的某些值的银河旋转曲线的定性和定量可接受的行为。对银河旋转曲线的定量可接受描述的一阶系数的值为:G1在10^-31至10^-31至10^-30 m^2 S^-2 kg^-1之间;并且,C1在10^-21至10^-20 m^-1之间。此外,我们的模型意味着存在临界距离的存在,即Mond效应变得重要而不是临界加速度。实际上,如果临界加速度不是恒定的,而是银河bary子质量的线性函数,则米尔格罗姆的蒙德会收敛于我们的模型。

Dark matter is the generally accepted paradigm in astrophysics and cosmology as a solution to the higher rate of rotation in galaxies, among many other reasons. But since there are still some problems encountered by the standard dark matter paradigm at the galactic scale, we have resorted to an alternative solution, similar to Milgrom's Modified Newtonian dynamics (MOND). Here, we have assumed that: (i) either the gravitational constant, G, is a function of distance (scale): G = G(r), or, (ii) the gravitational-to-inertial mass ratio, mg/mi, is a function of distance (scale): f(r). We have used a linear approximation of each function, from which two new parameters appeared that have to be determined: G1, the first-order coefficient of gravitational coupling, and C1, the first-order coefficient of gravitational-to-inertial mass ratio. In the current part of this research, we have generated simplified theoretical rotation curves for some hypothetical galaxies by varying the parameters. We have concluded that our model gives a qualitatively and quantitatively acceptable behavior of the galactic rotation curves for some values of these parameters. The values of the 1st-order coefficients that give quantitatively acceptable description of galactic rotation curves are: G1 between around 10^-31 to 10^-30 m^2 s^-2 kg^-1; and, C1 between 10^-21 to 10^-20 m^-1. Furthermore, our model implies the existence of a critical distance at which the MOND effects become significant rather than a critical acceleration. In fact, Milgrom's MOND converges with our model if the critical acceleration is not a constant but a linear function of the galactic baryonic mass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源