论文标题
在sobolev和$ l^p $ - $ l^2 $ -Provention的稳定性
On the Sobolev and $L^p$-Stability of the $L^2$-projection
论文作者
论文摘要
对于(加权)$ l^p $和$ w^{1,p} $ - 对于任何多项式学位的(加权)$ l^p $和$ w^{1,$ l^2 $ - 投影的稳定性 - 对于任何多项式学位,以及在网格分级的适当条件下的任何空间维度。这包括$ w^{1,2} $ - 在两个空间维度的任何多项式学位和由最新顶点分配产生的网格中的两个空间维度的稳定性。在三个维度上的网格分级上的现实但猜想的假设下,我们显示了所有多项式度的$ w^{1,2} $ - 稳定性。我们还提出了一种修改的一分配策略,该策略会导致更好的$ w^{1,p} $ - 稳定性。此外,我们研究了$ l^2 $ - 投影在Crouzeix-Raviart元素上的稳定性。
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{1,2}$-stability in two space dimensions for any polynomial degree and meshes generated by newest vertex bisection. Under realistic but conjectured assumptions on the mesh grading in three dimensions we show $W^{1,2}$-stability for all polynomial degrees. We also propose a modified bisection strategy that leads to better $W^{1,p}$-stability. Moreover, we investigate the stability of the $L^2$-projection onto Crouzeix-Raviart elements.