论文标题

粗粒全息状态:一般时间上的半经典流动

Coarse-Graining Holographic States: A Semiclassical Flow in General Spacetimes

论文作者

Murdia, Chitraang, Nomura, Yasunori, Rath, Pratik

论文摘要

通过对张量网络实现的全息图的理解,我们开发了一个散装程序,可以将其解释为生成一系列粗粒全息态。粗粒度程序涉及识别在短距离内纠缠的自由度并将其解开。这是由生成Codimension-1对象的流程方程在整体中表现出来的,我们称之为全息片。我们将较早的经典结构推广到包括大量量子校正,这自然涉及广义熵,以衡量相关边界自由度的数量。半经典的粗粒度导致接近量子极端表面的流动,例如在讨论黑洞信息悖论中出现的纠缠岛。我们还讨论了当前图片与全息词典作为量子误差校正的关系。

Motivated by the understanding of holography as realized in tensor networks, we develop a bulk procedure that can be interpreted as generating a sequence of coarse-grained holographic states. The coarse-graining procedure involves identifying degrees of freedom entangled at short distances and disentangling them. This is manifested in the bulk by a flow equation that generates a codimension-1 object, which we refer to as the holographic slice. We generalize the earlier classical construction to include bulk quantum corrections, which naturally involves the generalized entropy as a measure of the number of relevant boundary degrees of freedom. The semiclassical coarse-graining results in a flow that approaches quantum extremal surfaces such as entanglement islands that have appeared in discussions of the black hole information paradox. We also discuss the relation of the present picture to the view that the holographic dictionary works as quantum error correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源