论文标题
歧管的模量空间上的脱钩装饰
Decoupling decorations on moduli spaces of manifolds
论文作者
论文摘要
我们考虑具有嵌入式颗粒和圆盘的$ D $维歧管的模量空间。在这个模量空间中,粒子和圆盘的位置受到$ d $维的歧管的约束。我们将将这个模量空间与$ d $二维流形的模量空间进行比较,其中这种装饰的位置不再受到限制,即装饰是解耦的。我们将Bödigheimer-tillmann的工作概括为定向表面,并为具有不同切向结构以及更高维歧管的表面获得新的结果。我们还将这种结果概括为具有更通用的子曼式装饰的模量空间,并专门研究装饰未进行的未链接圆圈的情况。
We consider moduli spaces of $d$-dimensional manifolds with embedded particles and discs. In this moduli space, the location of the particles and discs is constrained by the $d$-dimensional manifold. We will compare this moduli space with the moduli space of $d$-dimensional manifolds in which the location of such decorations is no longer constrained, i.e. the decorations are decoupled. We generalise work by Bödigheimer--Tillmann for oriented surfaces and obtain new results for surfaces with different tangential structures as well as to higher dimensional manifolds. We also provide a generalisation of this result to moduli spaces with more general submanifold decorations and specialise in the case of decorations being unparametrised unlinked circles.