论文标题

相对于谐波多项式和对数内核,复杂平面上的度量

Balayage of Measures on the Complex Plane with respect to Harmonic Polynomials and Logarithmic Kernels

论文作者

Khabibullin, B. N., Menshikova, E. B.

论文摘要

相对于一组平面或有限维欧几里得空间的所有次谐波或谐波功能的类别的衡量标准是潜在理论的主要对象及其在复杂分析中的应用之一。对于$ o $上的$ h $功能,$ o $上的$ω$是$ o $ o $ o $的balayage,相对于此类$ h $,如果$ \ int_o h \,dδ\ leq \ leq \ leq \ int_o h \,n h $中的每个$ h \。在我们以前的作品中,我们使用此概念来研究相对于亚谐波和谐波功能类别的信封,并将其应用于$ o $上的零态函数集,其增长限制在$ o $的边界附近。在本文中,我们将复杂的平面$ \ mathbb c $作为$ o $,而不是在$ \ mathbb c $上的所有(子)谐波函数的类别,而是最多使用$ p $的谐波多项式学位的类别,通常与logarithmic function-kernels $ z \ mapsto $ z \ mapsto \ mapsto \ ln |我们的研究表明,与以前的情况相比,这种情况既具有许多相似之处和功能。考虑了以下问题:衡量标准对极性集的敏感性;衡量标准及其对数电位之间的双重性,以及对此类潜力的完整内部描述; Balayage在多项式和对数内核方面的扩展/延长与Balayage相对于有限订单$ P $的亚谐波功能。这些结果的计划应用在此处不讨论有限顺序的整个和男构函数理论,稍后将介绍。

Balayage of measures with respect to classes of all subharmonic or harmonic functions on an open set of a plane or finite-dimensional Euclidean space is one of the main objects of potential theory and its applications to the complex analysis. For a class $H$ of functions on $O$, a measure $ω$ on $O$ is a balayage of a measure $δ$ on $O$ with respect to this class $H$ if $\int_O h\, d δ\leq \int_O h\, dω$ for each $h\in H$. In our previous works we used this concept to study envelopes relative to classes of subharmonic and harmonic functions and apply them to describe zero sets of holomorphic functions on $O$ with growth restrictions near the boundary of $O$. In this article, we consider the complex plane $\mathbb C$ as $O$, and instead of the classes of all (sub)harmonic functions on $\mathbb C$, we use only the classes of harmonic polynomials of degree at most $p$, often together with the logarithmic functions-kernels $z\mapsto \ln |w-z|$, $w\in \mathbb C$. Our research has show that this case has both many similarities and features compared to previous situations. The following issues are considered: the sensitivity of balayage of measures to polar sets; the duality between balayage of measures and their logarithmic potentials, together with a complete internal description of such potentials; extension/prolongation of balayage with respect to polynomials and logarithmic kernels to balayage with respect to subharmonic functions of finite order $p$. The planned applications of these results to the theory of entire and meromorphic functions of finite order are not discussed here and will be presented later.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源