论文标题
用于稀疏视图和限量角4D CT重建的多片融合
Multi-Slice Fusion for Sparse-View and Limited-Angle 4D CT Reconstruction
论文作者
论文摘要
跨越四个或多个维度(例如空间,时间和其他独立参数)的逆问题变得越来越重要。最先进的4D重建方法使用基于模型的迭代重建(MBIR),但在很大程度上取决于先前建模的质量。最近,已显示出插件(PNP)方法是使用最先进的Denoisising算法合并先进模型的有效方法。但是,由于算法的复杂性和有效训练的难度增加,很难将最新的DINOISER(例如BM4D)和深卷积神经网络(CNN)(CNN)提供给2D或3D图像。 在本文中,我们基于多个低维地位的融合,提出了多片融合,这是一种用于4D重建的新型算法。我们的方法使用多代理共识均衡(MACE),即插头播放的扩展,作为集成多个较低维模型的框架。我们将方法应用于4D锥束X射线CT重建,以对在采集过程中动态移动的样品进行非破坏性评估(NDE)。我们在分布式的异质簇上实现多片融合,以便在合理的时间内重建大型4D卷,并演示算法的固有可行性质。我们在稀疏视图和有限角度的CT数据上介绍了模拟和真实的实验结果,以证明多板融合可以实质上提高相对于传统方法的重建质量,同时也可以实施和训练。
Inverse problems spanning four or more dimensions such as space, time and other independent parameters have become increasingly important. State-of-the-art 4D reconstruction methods use model based iterative reconstruction (MBIR), but depend critically on the quality of the prior modeling. Recently, plug-and-play (PnP) methods have been shown to be an effective way to incorporate advanced prior models using state-of-the-art denoising algorithms. However, state-of-the-art denoisers such as BM4D and deep convolutional neural networks (CNNs) are primarily available for 2D or 3D images and extending them to higher dimensions is difficult due to algorithmic complexity and the increased difficulty of effective training. In this paper, we present multi-slice fusion, a novel algorithm for 4D reconstruction, based on the fusion of multiple low-dimensional denoisers. Our approach uses multi-agent consensus equilibrium (MACE), an extension of plug-and-play, as a framework for integrating the multiple lower-dimensional models. We apply our method to 4D cone-beam X-ray CT reconstruction for non destructive evaluation (NDE) of samples that are dynamically moving during acquisition. We implement multi-slice fusion on distributed, heterogeneous clusters in order to reconstruct large 4D volumes in reasonable time and demonstrate the inherent parallelizable nature of the algorithm. We present simulated and real experimental results on sparse-view and limited-angle CT data to demonstrate that multi-slice fusion can substantially improve the quality of reconstructions relative to traditional methods, while also being practical to implement and train.