论文标题

局部非线性解决方案策略,以有效模拟非常规储层

Localized Nonlinear Solution Strategies for Efficient Simulation of Unconventional Reservoirs

论文作者

Jiang, Jiamin

论文摘要

对非常规储层的准确有效的数值模拟具有挑战性。长时间的短暂流动和陡峭的潜在梯度由于矩阵和断裂之间的极端电导率对比而发生。详细的近孔/近骨折模型对于提供足够的分辨率是必要的,但是对于具有多个断裂阶段的现场病例,它们在计算上是不切实际的。非常规仿真文献中的先前作品主要集中在适应井和断裂的网格水平上。对非线性策略进行了有限的研究,该策略利用了时间步长和非线性迭代的局部性。为了执行局部计算,首先确定随后迭代的模拟细胞的活动子集至关重要。主动集标志将更新的单元格,然后求解相应的局部线性系统。这项工作开发了本地化方法,这些方法易于适用于非常规储层中的复杂断裂网络和流动物理。通过利用压力更新的扩散性质,提出了一种自适应算法来对活动域进行足够的估计。此外,我们基于非线性域分解(DD)开发了局部求解器。与标准DD方法相比,域分区是动态构造的。新求解器提供了适应流动性和牛顿更新的有效分区。我们使用离散断裂网络的几个复杂问题评估了开发的方法。结果表明,跨时间段和迭代的大量解决方案位置。与标准的牛顿求解器相比,新求解器可以实现出色的计算性能。此外,保留了牛顿收敛行为,而不会对解决方案准确性产生任何影响。

Accurate and efficient numerical simulation of unconventional reservoirs is challenging. Long periods of transient flow and steep potential gradients occur due to the extreme conductivity contrast between matrix and fracture. Detailed near-well/near-fracture models are necessary to provide sufficient resolution, but they are computationally impractical for field cases with multiple fracture stages. Previous works in the literature of unconventional simulations mainly focus on gridding level that adapts to wells and fractures. Limited research has been conducted on nonlinear strategies that exploit locality across timesteps and nonlinear iterations. To perform localized computations, an a-priori strategy is essential to first determine the active subset of simulation cells for the subsequent iteration. The active set flags the cells that will be updated, and then the corresponding localized linear system is solved. This work develops localization methods that are readily applicable to complex fracture networks and flow physics in unconventional reservoirs. By utilizing the diffusive nature of pressure updates, an adaptive algorithm is proposed to make adequate estimates for the active domains. In addition, we develop a localized solver based on nonlinear domain decomposition (DD). Comparing to a standard DD method, domain partitions are dynamically constructed. The new solver provides effective partitioning that adapts to flow dynamics and Newton updates. We evaluate the developed methods using several complex problems with discrete fracture networks. The results show that large degrees of solution locality present across timesteps and iterations. Comparing to a standard Newton solver, the new solvers enable superior computational performance. Moreover, Newton convergence behavior is preserved, without any impact on solution accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源