论文标题

孔的可达到的可达到双Quitib 3D磁力测定法结合的可用性

Attainability of the Holevo-Cramér-Rao bound for two-qubit 3D magnetometry

论文作者

Friel, Jamie, Palittapongarnpim, Pantita, Albarelli, Francesco, Datta, Animesh

论文摘要

我们使用两个量子位研究了量子限制的3D磁力测定法。两个量子位构成了用于3D磁力测定法的最小的多量子系统,同时估计了三个阶段,因为单个量子位是不可能的。我们提供了使用两个Qubit纯态的3D磁力测定法的基本可达到的量子结合的Holevo-Cramér-Rao结合(HCRB),这是可实现的量子结合,并通过等级-1投射测量表明其可固定性。我们还使用数值方法检查了HCRB在存在噪声的情况下的可实现性。在达到HCRB可能需要的集体测量值时,我们发现HCRB实际上仅由两个副本饱和。在低噪声状态下,最多三份副本无法获得HCRB。更普遍地,我们引入了新的多参数通道边界,以比较量子古典和经典的量词策略,在这些策略中,该状态的多个独立副本分别在记录参数之前或之后纠缠在一起。我们发现它们的相对性能取决于噪声强度,而theclassical-Quantum策略的性能更好。我们以浅量子电路结束,该电路接近HCRB设定的基本量子限制,用于使用多达三个拷贝的两量尺寸3D磁力测定法。

We study quantum-limited 3D magnetometry using two qubits. Two qubits form the smallest multi-qubit system for 3D magnetometry, the simultaneous estimation of three phases, as it is impossible with a single qubit. We provide an analytical expression for the Holevo-Cramér-Rao bound (HCRB),the fundamental attainable quantum bound of multiparameter estimation, for 3D magnetometry using two-qubit pure states and show its attainability by rank-1 projective measurements. We also examine the attainability of the HCRB in the presence of dephasing noise using numerical methods. While attaining the HCRB may require collective measurements over infinitely many copies, we find that for high noise the HCRB is practically saturated by two copies only. In the low noise regime, up to three copies are unable to attain the HCRB. More generally, we introduce new multiparameter channel bounds to compare quantum-classical and classical-quantum strategies where multiple independent copies of the state are entangled before or after recording the parameters respectively. We find that their relative performance depends on the noise strength, with theclassical-quantum strategy performing better for high noise. We end with shallow quantum circuits that approach the fundamental quantum limit set by the HCRB for two-qubit 3D magnetometry using up to three copies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源