论文标题
在低温温度下偏振化编码的共定位显微镜
Polarization-encoded co-localization microscopy at cryogenic temperatures
论文作者
论文摘要
超分辨率定位显微镜基于确定样品中各个荧光标记的位置。达到较高本地化精度的主要挑战在于,单个发射器收集的光子数量有限。为了解决此问题,已经表明,可以利用低温下增加的光稳定性,达到亚纳米范围内的定位精度。单分子超分辨率成像的另一种关键成分是能够在衍射限制点内激活单个发射极的能力。在这里,我们报告了有机染料在低温下的光闪电行为,并详细介绍了这种无处不在现象的局限性,以选择单分子。然后,我们表明记录发射极化不仅提供了对分子取向的访问,而且还促进了光子分配到单个闪烁分子。此外,我们将激发极化的定期调节作为有效切换荧光团的强大方法。我们通过在不同的DNA折纸结构上解决两个发射器来标记每种方法。
Super-resolution localization microscopy is based on determining the positions of individual fluorescent markers in a sample. The major challenge in reaching an ever higher localization precision lies in the limited number of collected photons from single emitters. To tackle this issue, it has been shown that one can exploit the increased photostability at low temperatures, reaching localization precisions in the sub-nanometer range. Another crucial ingredient of single-molecule super-resolution imaging is the ability to activate individual emitter within a diffraction-limited spot. Here, we report on photoblinking behavior of organic dyes at low temperature and elaborate on the limitations of this ubiquitous phenomenon for selecting single molecules. We then show that recording the emission polarization not only provides access to the molecular orientation, but it also facilitates the assignment of photons to individual blinking molecules. Furthermore, we employ periodical modulation of the excitation polarization as a robust method to effectively switch fluorophores. We bench mark each approach by resolving two emitters on different DNA origami structures.