论文标题
PDE驱动的时空解散
PDE-Driven Spatiotemporal Disentanglement
论文作者
论文摘要
机器学习社区的最新工作解决了通过利用微分方程理论的特定工具来预测高维时空现象的问题。遵循这个方向,我们在本文中提出了基于部分微分方程的分辨率方法:变量的分离,针对此任务的新颖和一般范式。这种灵感使我们能够对时空分离的动态解释。它诱导了一个基于现象的学习空间和时间表示的原则模型,以准确预测未来的观察。我们在实验上证明了我们方法对物理和合成视频数据集的先前最新模型的性能和广泛适用性。
A recent line of work in the machine learning community addresses the problem of predicting high-dimensional spatiotemporal phenomena by leveraging specific tools from the differential equations theory. Following this direction, we propose in this article a novel and general paradigm for this task based on a resolution method for partial differential equations: the separation of variables. This inspiration allows us to introduce a dynamical interpretation of spatiotemporal disentanglement. It induces a principled model based on learning disentangled spatial and temporal representations of a phenomenon to accurately predict future observations. We experimentally demonstrate the performance and broad applicability of our method against prior state-of-the-art models on physical and synthetic video datasets.