论文标题
面部动画信号的实时清洁和改进
Real-Time Cleaning and Refinement of Facial Animation Signals
论文作者
论文摘要
随着娱乐行业及其他地区对实时动画3D内容的需求不断增长,基于绩效的动画引起了学术和工业社区的兴趣。尽管最近的运动捕捉动画解决方案取得了令人印象深刻的结果,但通常需要手工制作的后处理,因为生成的动画通常包含伪影。现有的实时运动捕获解决方案选择了标准信号处理方法来增强所得动画的时间连贯性并删除不准确性。尽管这些方法产生平滑的结果,但它们本质地过滤了面部运动动力学的一部分,例如高频瞬态运动。在这项工作中,我们提出了一个实时的动画系统,该系统可以保留面部运动的自然动态甚至恢复。为此,我们利用现成的复发性神经网络体系结构,该架构学习清洁动画数据的适当面部动态模式。我们使用信号的时间导数对系统进行参数,从而使我们的网络能够在任何框架上处理动画。定性结果表明,我们的系统能够从嘈杂或退化的输入动画中检索自然运动信号。
With the increasing demand for real-time animated 3D content in the entertainment industry and beyond, performance-based animation has garnered interest among both academic and industrial communities. While recent solutions for motion-capture animation have achieved impressive results, handmade post-processing is often needed, as the generated animations often contain artifacts. Existing real-time motion capture solutions have opted for standard signal processing methods to strengthen temporal coherence of the resulting animations and remove inaccuracies. While these methods produce smooth results, they inherently filter-out part of the dynamics of facial motion, such as high frequency transient movements. In this work, we propose a real-time animation refining system that preserves -- or even restores -- the natural dynamics of facial motions. To do so, we leverage an off-the-shelf recurrent neural network architecture that learns proper facial dynamics patterns on clean animation data. We parametrize our system using the temporal derivatives of the signal, enabling our network to process animations at any framerate. Qualitative results show that our system is able to retrieve natural motion signals from noisy or degraded input animation.