论文标题
darboux在BFM空间上坐标
Darboux coordinates on the BFM spaces
论文作者
论文摘要
Bezrukavnikov-Finkelberg-Mirković[Compos。数学。 {\ bf 141}(2005)]确定了一个仿射grassmannian的$ k $ - 我们称为(坐标环)a bfm space的(坐标环)[proc。 ICM Seoul(2014)],带有Toda Lattice版本。我们提供了一个新的生成器系统和该空间的某个定位的关系,可以看作是其Darboux坐标的一种版本。这在Finkelberg-tymbaliuk [数学进展中都建立了一个猜想。 {\ bf 300}(2019)]将连接的还原代数组与Levi子组的BFM空间联系起来。
Bezrukavnikov-Finkelberg-Mirković [Compos. Math. {\bf 141} (2005)] identified the equivariant $K$-group of an affine Grassmannian, that we refer as (the coordinate ring of) a BFM space á là Teleman [Proc. ICM Seoul (2014)], with a version of Toda lattice. We give a new system of generators and relations of a certain localization of this space, that can be seen as a version of its Darboux coordinate. This establishes a conjecture in Finkelberg-Tymbaliuk [Progress in Math. {\bf 300} (2019)] that relates the BFM space of a connected reductive algebraic group with those of Levi subgroups.