论文标题
使用计算和实验的基准测试状态的硼碳化物方程
Benchmarking boron carbide equation of state using computation and experiment
论文作者
论文摘要
硼碳化物(B $ _4 $ c)对惯性限制融合(ICF)和高能量密度物理实验具有基本科学和实际兴趣。我们报告了B $ _4 $ C的状态方程(EOS)在液体,温暖的物质和等离子体阶段的全面计算研究的结果。通过与在国家点火设施(NIF)进行的平面冲击实验中,我们的计算与高野群测量最高61兆巴进行了交叉验证。我们的计算方法包括路径积分蒙特卡洛,活性扩展以及全电子格林的功能korringa-kohn-rostoker和分子动力学,它们都是基于密度功能理论的。我们在广泛的温度下计算B $ _4 $ C的压力内部能量EO($ \ sim $ 6 $ \ times $ 10 $^3 $ -5 $ \ times $ 10 $^8 $ k)和密度(0.025--5-50 g/cm $ $^{3} $)。我们评估,理论预测之间最大的差异为$ \ lyssim $ 5%,靠近1--2 $ \ times10^6 $ k的压缩最大值。这是k壳显着电离的温暖状态,并对理论和实验构成了巨大的挑战。通过与不同的EOS模型进行比较,我们找到了与我们的计算一致的Purogatorio模型(LEO 2122)。我们的第一原则预测和Leos 2122之间的压力最大差异为$ \ sim $ 18%,在温度之间发生,在6 $ \ times $ \ times $ 10 $^3 $ -2 $ \ times $ 10 $^5 $ k之间,我们认为这是由ION热曲线和与Leos 2122相比的冷曲线的差异所产生的。此外,我们已经开发了三个新的状态模型方程,并将它们应用于极性直接驱动NIF内爆的1D流体动力模拟,这表明这些新模型现已用于未来的ICF设计研究。
Boron carbide (B$_4$C) is of both fundamental scientific and practical interest in inertial confinement fusion (ICF) and high energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B$_4$C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B$_4$C over a broad range of temperatures ($\sim$6$\times$10$^3$--5$\times$10$^8$ K) and densities (0.025--50 g/cm$^{3}$). We assess that the largest discrepancies between theoretical predictions are $\lesssim$5% near the compression maximum at 1--2$\times10^6$ K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are $\sim$18% and occur at temperatures between 6$\times$10$^3$--2$\times$10$^5$ K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. In addition, we have developed three new equation of state models and applied them to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.