论文标题
通过子类别探索弱监督的语义细分
Weakly-Supervised Semantic Segmentation via Sub-category Exploration
论文作者
论文摘要
现有的弱监督语义分割方法使用图像级注释通常依赖于初始响应来定位对象区域。但是,由于网络不需要整个对象来优化目标函数,因此分类网络生成的这种响应图通常集中在区分对象部分上。为了强迫网络注意对象的其他部分,我们提出了一种简单而有效的方法,该方法通过利用子类别信息来介绍一个自我监督的任务。具体来说,我们在图像功能上执行聚类,以在每个带注释的父类中生成伪子类别标签,并构建一个子类别目标,以将网络分配到更具挑战性的任务。通过迭代的群集图像特征,训练过程并不局限于最歧视的对象部分,从而提高了响应图的质量。我们进行广泛的分析以验证提出的方法,并表明我们的方法对最新方法的表现有利。
Existing weakly-supervised semantic segmentation methods using image-level annotations typically rely on initial responses to locate object regions. However, such response maps generated by the classification network usually focus on discriminative object parts, due to the fact that the network does not need the entire object for optimizing the objective function. To enforce the network to pay attention to other parts of an object, we propose a simple yet effective approach that introduces a self-supervised task by exploiting the sub-category information. Specifically, we perform clustering on image features to generate pseudo sub-categories labels within each annotated parent class, and construct a sub-category objective to assign the network to a more challenging task. By iteratively clustering image features, the training process does not limit itself to the most discriminative object parts, hence improving the quality of the response maps. We conduct extensive analysis to validate the proposed method and show that our approach performs favorably against the state-of-the-art approaches.