论文标题
大型$ r $ - 电荷运营商在保形歧管上的过渡
Transition of Large $R$-Charge Operators on a Conformal Manifold
论文作者
论文摘要
我们研究了在保形的歧管上以大$ r $ charge的阶段之间的过渡。这些阶段的特征是最低运算符尺寸$δ(q_r)$的行为,用于固定和大$ r $ - charge $ q_r $。例如,我们将重点放在$ d = 3 $,$ \ mathcal {n} = 2 $ wess-zumino型号,带有立方超级电位$ w = xyz+\ frac {6}(x^+y^3+y^3+z^3)$,并计算使用$ -Expans $ thrim-expans $ thrim-expans $ - 在以下两个限制中,(领先顺序)结果被证明为\ begin {equation*} δ(q_r,τ)= \ begin {case} \ left(\ text {bps bond} \右)\ left [1+o(ε| |^|^|^2q_r)\ right],&q_r \ ll \ ll \ left \ left \ {\ frac {1} {1}ε,\,\,\,\ frac,\ frac {1}} \ frac {9} {8} \ left(\ frac {ε| |^|^2} {2+ | |τ|^2} \ right)^{\ frac {1} {d-1} {d-1}} q_r^ \ left [1+o \ left(\ left(ε|^|^2q_r \ right)^{ - \ frac {2} {d-1}}}}}} \ right)\ right],], &q_r \ gg \ left \ {\ frac {1}ε,\,\ frac {1} {ε| |^2} \ right \} \ end {cases} \ end {equation*},它导致我们进入双尺度参数,$ε|τ|^2q_r $,它在“近bps相”($δ(q)\ sim q $)和“ superfluid阶段”($δ(q)\ sim q^q^Q^{d/d/d/d/d/$ r之间)插入了“近bps相”($δ(q)\ sim q $)。这种平稳的过渡发生在$τ= 0 $附近,是模量空间的存在和$τ= 0 $的无限手性环的存在的大$ r $ charge表现。我们还认为,这种行为可以扩展到最小修改的三个维度,因此我们得出的结论是,$δ(q_r,τ)$经历了左右的平滑过渡,围绕$ q_r \ sim 1/|τ|^2 $。此外,由于模型的双重性,我们发现$δ(q_r,τ)$的一阶相变是$τ$的函数。我们还将结果的适用性评论至小$ r $ charge。
We study the transition between phases at large $R$-charge on a conformal manifold. These phases are characterized by the behaviour of the lowest operator dimension $Δ(Q_R)$ for fixed and large $R$-charge $Q_R$. We focus, as an example, on the $D=3$, $\mathcal{N}=2$ Wess-Zumino model with cubic superpotential $W=XYZ+\fracτ{6}(X^3+Y^3+Z^3)$, and compute $Δ(Q_R,τ)$ using the $ε$-expansion in three interesting limits. In two of these limits the (leading order) result turns out to be \begin{equation*} Δ(Q_R,τ)= \begin{cases} \left(\text{BPS bound}\right)\left[1+O(ε|τ|^2Q_R)\right], & Q_R\ll \left\{ \frac{1}ε,\, \frac{1}{ε|τ|^2}\right\}\\ \frac{9}{8}\left(\frac{ε|τ|^2}{2+|τ|^2}\right)^{\frac{1}{D-1}}Q_R^{\frac{D}{D-1}} \left[1+O\left(\left(ε|τ|^2Q_R\right)^{-\frac{2}{D-1}}\right)\right], & Q_R\gg \left\{ \frac{1}ε,\, \frac{1}{ε|τ|^2}\right\} \end{cases} \end{equation*} which leads us to the double-scaling parameter, $ε|τ|^2Q_R$, which interpolates between the "near-BPS phase" ($Δ(Q)\sim Q$) and the "superfluid phase" ($Δ(Q)\sim Q^{D/(D-1)}$) at large $R$-charge. This smooth transition, happening near $τ=0$, is a large-$R$-charge manifestation of the existence of a moduli space and an infinite chiral ring at $τ=0$. We also argue that this behavior can be extended to three dimensions with minimal modifications, and so we conclude that $Δ(Q_R,τ)$ experiences a smooth transition around $Q_R\sim 1/|τ|^2$. Additionally, we find a first-order phase transition for $Δ(Q_R,τ)$ as a function of $τ$, as a consequence of the duality of the model. We also comment on the applicability of our result down to small $R$-charge.