论文标题
全球限制型倍增倍曲面的估计
Global restriction estimates for elliptic hyperboloids
论文作者
论文摘要
我们证明了全球傅立叶限制估计值,或者是任意维度$ d \ geq 2 $的椭圆形的双曲面,延长了与Oliveira E Silva和Stovall的最新联合工作。我们的结果在(伴随的)双线性范围内是无条件的,$ q> \ frac {2(d+3)} {d+1} $,并随着进一步的进步朝着椭圆表面的局部限制猜想而有条件地扩展。
We prove global Fourier restriction estimates for elliptic, or two-sheeted, hyperboloids of arbitrary dimension $d \geq 2$, extending recent joint work with Oliveira e Silva and Stovall. Our results are unconditional in the (adjoint) bilinear range, $q > \frac{2(d+3)}{d+1}$, and extend conditionally upon further progress toward the local restriction conjecture for elliptic surfaces.