论文标题

晶格模型中Su(n)积分的大N极限

The large N limit of SU(N) integrals in lattice models

论文作者

Borisenko, O., Chelnokov, V., Voloshyn, S.

论文摘要

标准的u(n)和su(n)积分是在较大的n个限制中计算的。我们的主要发现是,对于重要的积分,对于两组而言,此限制是不同的。我们描述了SU(N)模型的临界行为,并讨论了我们的结果对有限温度和非零Baryon化学潜力的SU(N)晶格规定的较大n行为的含义。我们方法的关键要素是1)将积分扩展到不可约表示的总和中,以及2)对对称群体$ s_r $的两个不同表示的尺寸的R分区计算总和的计算。

The standard U(N) and SU(N) integrals are calculated in the large N limit. Our main finding is that for an important class of integrals this limit is different for two groups. We describe the critical behaviour of SU(N) models and discuss implications of our results for the large N behaviour of SU(N) lattice gauge theories at finite temperatures and non-zero baryon chemical potential. The key ingredients of our approach are 1) expansion of the integrals into a sum over irreducible representations and 2) calculation of sums over partitions of r of products of dimensions of two different representations of a symmetric group $S_r$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源