论文标题

Ab Aur,用于研究行星形成研究的罗塞塔石(i):化学研究形成行星的磁盘

AB Aur, a Rosetta stone for studies of planet formation (I): chemical study of a planet-forming disk

论文作者

Marichalar, Pablo Rivière, Fuente, Asunción, Gal, Romane Le, Baruteau, Clément, Neri, Roberto, Navarro-Almaida, David, Morales, Sandra Patricia Treviño, Macías, Enrique, Bachiller, Rafael, Osorio, Mayra

论文摘要

AB Aur是一个Herbig Ae星,可容纳原型过渡磁盘。磁盘显示了与行星形成机制相关的大量特征。了解这些特征的物理和化学特征对于促进我们对行星形成的了解至关重要。我们的目的是描述Herbig Ae明星AB Aur周围的气体磁盘。使用NOEMA确定物理和化学条件进行了完整的光谱研究。我们介绍了连续体和12CO,13CO,C18O,H2CO等的新观察。我们使用集成强度图和堆叠光谱来得出磁盘温度的估计值。通过组合我们的13CO和C18O观测值,我们计算了沿磁盘的气盘比。我们还为不同物种得出了柱密度图,并使用它们来计算丰度图。我们的观察结果与天体化学模型进行了比较。我们在一个从0.6到2.0 ARCSEC延伸的环中检测到连续发射,峰值为0.97,并且具有强方差方位不对称性。观察到的分子显示出不同的空间分布,并且分布的峰与结合能无关。使用H2CO和SO线,我们得出了平均磁盘温度为39K。我们得出了一个气盘比,范围为10至40。从对AB AUR周围的原型磁盘进行非常完整的光谱研究,我们首次衍生出气体温度和沿磁盘的气体与粉尘比,提供了对限制流体动力学模拟至关重要的信息。此外,我们探索了气体化学,尤其是硫耗尽。衍生的硫消耗取决于假定的C/O比。我们的数据可以通过C/O〜0.7和S/H = 8E-8更好地解释。

AB Aur is a Herbig Ae star that hosts a prototypical transition disk. The disk shows a plethora of features connected with planet formation mechanisms. Understanding the physical and chemical characteristics of these features is crucial to advancing our knowledge of planet formation. We aim to characterize the gaseous disk around the Herbig Ae star AB Aur. A complete spectroscopic study was performed using NOEMA to determine the physical and chemical conditions. We present new observations of the continuum and 12CO, 13CO, C18O, H2CO, and SO lines. We used the integrated intensity maps and stacked spectra to derive estimates of the disk temperature. By combining our 13CO and C18O observations, we computed the gas-to-dust ratio along the disk. We also derived column density maps for the different species and used them to compute abundance maps. The results of our observations were compared with Nautilus astrochemical models. We detected continuum emission in a ring that extends from 0.6 to 2.0 arcsec, peaking at 0.97 and with a strong azimuthal asymmetry. The molecules observed show different spatial distributions, and the peaks of the distributions are not correlated with the binding energy. Using H2CO and SO lines, we derived a mean disk temperature of 39 K. We derived a gas-to-dust ratio that ranges from 10 to 40. The comparison with Nautilus models favors a disk with a low gas-to-dust ratio (40) and prominent sulfur depletion. From a very complete spectroscopic study of the prototypical disk around AB Aur, we derived, for the first time, the gas temperature and the gas-to-dust ratio along the disk, providing information that is essential to constraining hydrodynamical simulations.Moreover, we explored the gas chemistry and, in particular, the sulfur depletion. The derived sulfur depletion is dependent on the assumed C/O ratio. Our data are better explained with C/O ~ 0.7 and S/H=8e-8.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源