论文标题

在模块化琼斯多项式上

On the modular Jones polynomial

论文作者

Pagel, Guillaume

论文摘要

结理论的一个主要问题是决定琼斯多项式是否检测到结节。在本文中,我们研究了一个较弱的相关问题,即琼斯多项式是否减少了整数$ n $可以检测到UNNENNOT。众所周知,答案是$ n = 2^k $的负面,带有$ k \ geq 1 $和$ n = 3 $。在这里,我们证明,如果答案对约$ n $是负面的,那么对于任何$ k \ geq 1 $,对于$ n^k $来说是负的。特别是,对于任何$ k \ geq 1 $,我们构建了琼斯多项式的非平凡结〜$ 3^k $。

A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $k\geq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $k\geq 1$. In particular, for any $k\geq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源