论文标题

仪器激活的多任务学习音乐源分离

Multitask learning for instrument activation aware music source separation

论文作者

Hung, Yun-Ning, Lerch, Alexander

论文摘要

音乐源分离是音乐信息检索的核心任务,在过去的几年中,它取得了巨大的改善。然而,大多数现有系统仅专注于源分离本身的问题,而忽略了其他〜--可能相关的 - 可能会导致更多质量收益的MIR任务。在这项工作中,我们提出了一种新型的多任务结构,以使用仪器激活信息来调查以提高源分离性能。此外,我们通过利用MedleyDB的组合和混合秘密数据集的组合来研究与六个独立仪器有关的系统,这是一种比广泛使用的MUSDB数据集中包含的三种仪器更现实的场景。结果表明,我们提出的多任务模型的表现优于混合秘密和MedleyDB数据集的混合物基线开放式模型,同时保持MUSDB数据集的可比性。

Music source separation is a core task in music information retrieval which has seen a dramatic improvement in the past years. Nevertheless, most of the existing systems focus exclusively on the problem of source separation itself and ignore the utilization of other~---possibly related---~MIR tasks which could lead to additional quality gains. In this work, we propose a novel multitask structure to investigate using instrument activation information to improve source separation performance. Furthermore, we investigate our system on six independent instruments, a more realistic scenario than the three instruments included in the widely-used MUSDB dataset, by leveraging a combination of the MedleyDB and Mixing Secrets datasets. The results show that our proposed multitask model outperforms the baseline Open-Unmix model on the mixture of Mixing Secrets and MedleyDB dataset while maintaining comparable performance on the MUSDB dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源