论文标题

Audiolime:使用源分离的可听解释

audioLIME: Listenable Explanations Using Source Separation

论文作者

Haunschmid, Verena, Manilow, Ethan, Widmer, Gerhard

论文摘要

深层神经网络(DNN)成功地应用于各种音乐信息检索(MIR)任务中,但它们的预测通常不可解释。我们提出了Audiolime,这是一种基于局部可解释的模型敏捷解释(LIME)的方法,该解释是通过当地的音乐定义扩展的。石灰中使用的扰动是通过通过源分离提取的开/关组件来创建的,这使我们的解释可听。我们在两个不同的音乐标记系统上验证了Audiolime,并表明它在竞争方法无法进行的情况下产生明智的解释。

Deep neural networks (DNNs) are successfully applied in a wide variety of music information retrieval (MIR) tasks but their predictions are usually not interpretable. We propose audioLIME, a method based on Local Interpretable Model-agnostic Explanations (LIME) extended by a musical definition of locality. The perturbations used in LIME are created by switching on/off components extracted by source separation which makes our explanations listenable. We validate audioLIME on two different music tagging systems and show that it produces sensible explanations in situations where a competing method cannot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源