论文标题

张量低级别重建语义分段

Tensor Low-Rank Reconstruction for Semantic Segmentation

论文作者

Chen, Wanli, Zhu, Xinge, Sun, Ruoqi, He, Junjun, Li, Ruiyu, Shen, Xiaoyong, Yu, Bei

论文摘要

上下文信息在语义分割的成功中起着必不可少的作用。最近,事实证明,基于非本地自我注意的方法对于上下文信息收集有效。由于所需的上下文包括在空间和渠道方面的注意力中,因此3D表示是适当的表述。但是,这些非本地方法描述了基于2D相似性矩阵的3D上下文信息,其中空间压缩可能会导致关注渠道的注意力。另一种选择是直接对上下文信息进行建模而无需压缩。但是,这项努力面临着一个基本困难,即上下文信息的高级属性。在本文中,我们提出了一种建模3D上下文表示的新方法,该方法不仅避免了空间压缩,还可以解决高级难度。在这里,受张量的典型多种分解理论的启发(即,可以将高级张量表示为rank-1张量的组合。),我们设计了一个低级别至高的上下文背景重建框架(即重新组件)。具体来说,我们首先引入张量生成模块(TGM),该模块(TGM)生成了许多等级-1张量来捕获上下文特征的片段。然后,我们使用这些Rank-1张量通过我们提出的张量重建模块(TRM)来恢复高级别上下文特征。广泛的实验表明,我们的方法在各种公共数据集上实现了最新的实验。此外,与常规的非本地方法相比,我们提出的方法的计算成本降低了100倍以上。

Context information plays an indispensable role in the success of semantic segmentation. Recently, non-local self-attention based methods are proved to be effective for context information collection. Since the desired context consists of spatial-wise and channel-wise attentions, 3D representation is an appropriate formulation. However, these non-local methods describe 3D context information based on a 2D similarity matrix, where space compression may lead to channel-wise attention missing. An alternative is to model the contextual information directly without compression. However, this effort confronts a fundamental difficulty, namely the high-rank property of context information. In this paper, we propose a new approach to model the 3D context representations, which not only avoids the space compression but also tackles the high-rank difficulty. Here, inspired by tensor canonical-polyadic decomposition theory (i.e, a high-rank tensor can be expressed as a combination of rank-1 tensors.), we design a low-rank-to-high-rank context reconstruction framework (i.e, RecoNet). Specifically, we first introduce the tensor generation module (TGM), which generates a number of rank-1 tensors to capture fragments of context feature. Then we use these rank-1 tensors to recover the high-rank context features through our proposed tensor reconstruction module (TRM). Extensive experiments show that our method achieves state-of-the-art on various public datasets. Additionally, our proposed method has more than 100 times less computational cost compared with conventional non-local-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源