论文标题
布朗运动I的功能重量级化组:有效运动方程
Functional Renormalisation Group for Brownian Motion I: The Effective Equations of Motion
论文作者
论文摘要
我们使用功能性重量法化组(FRG)来描述由过度抑制的langevin方程支配的随机过程的进出均衡动力学。利用Langevin动力学与超对称量子力学之间的连接,我们为有效动作写下了重构化流程方程,并根据局部电位近似和波函数的肾函数术语近似。我们从有效的动作(EA)$γ$中得出\ textIt {有效的运动}(EEOM)的平均位置$ \ weft \ weft \ langle x \ rangle x \ rangle $,差异$ \ langle \ left(x- \ langle x \ rangle x \ rangle \ rangle \ right \ right)此处概述的FRG流程方程提供了一种计算EA的具体方法,从而解决了派生的EEOM。获得的有效电位应直接确定精确的平衡统计数据,命名位置,方差以及平衡Boltzmann分布的所有高阶累积物。两部分系列的第一篇论文主要涉及建立必要的形式主义,而在第二部分中,我们将数值求解得出的方程式,并评估其在均衡中的有效性。
We use the functional Renormalisation Group (fRG) to describe the in and out of equilibrium dynamics of stochastic processes, governed by an overdamped Langevin equation. Exploiting the connection between Langevin dynamics and supersymmetric quantum mechanics in imaginary time, we write down renormalisation flow equations for the effective action, approximated in terms of the Local Potential Approximation and Wavefunction Renormalisation. We derive \textit{effective equations of motion} (EEOM) from the effective action (EA) $Γ$ for the average position $\left\langle x\right\rangle$, variance $\langle \left(x- \langle x \rangle\right)^2\rangle$ and covariance. The fRG flow equations outlined here provide a concrete way to compute the EA and thus solve the derived EEOM. The obtained effective potential should determine directly the exact equilibrium statistics, name the position, the variance, as well as all higher order cumulants of the equilibrium Boltzmann distribution. This first paper of a two part series is mostly concerned with setting up the necessary formalism while in part two we will numerically solve the equations derived her and assess their validity both in and out of equilibrium.