论文标题
Baillon定理的最大规律性的完善
A refinement of Baillon's theorem on maximal regularity
论文作者
论文摘要
根据Baillon的结果,众所周知,相对于连续功能的最大规律性很少见。这意味着所涉及的半群生成器是有限的运算符,或者所考虑的空间包含$ c_ {0} $。我们表明,在与$ \ mathrm {l}^{\ infty} $相对于最大规律性的精制条件下,后一种替代方案可以被排除。
By Baillon's result, it is known that maximal regularity with respect to the space of continuous functions is rare; it implies that either the involved semigroup generator is a bounded operator or the considered space contains $c_{0}$. We show that the latter alternative can be excluded under a refined condition resembling maximal regularity with respect to $\mathrm{L}^{\infty}$.