论文标题

基于深度学习方法识别建筑材料的弹性各向同性

Identifying the elastic isotropy of architectured materials based on deep learning method

论文作者

Wei, Anran, Xiong, Jie, Yang, Weidong, Guo, Fenglin

论文摘要

随着添加剂制造的成就,可以精确设计架构材料的机械性能。作为主要的设计目标之一,弹性各向同性对于许多工程应用具有重要意义。但是,现行的实验和数值方法通常过于昂贵且耗时,无法确定在设计空间中具有数万可能的微观结构的结构材料的弹性。因此,对于架构材料的高级设计,需要快速的机械表征。在这里,一种基于深度学习的方法是作为一种便携式和有效的工具开发的,可以直接从具有任意组件分布的代表性微观结构的图像中识别建筑材料的弹性。在本文中首先得出了用于构建材料的弹性各向同性的度量,以构建具有微观结构图像的数据库。然后,使用数据库训练卷积神经网络。发现卷积神经网络在各向同性鉴定上表现出良好的性能。同时,它表现出足够的鲁棒性,可以在实际制造中保持波动的材料特性下的性能。此外,训练有素的卷积神经网络可以在不同类型的架构材料(包括两相复合材料和多孔材料)之间成功传输,从而大大提高了基于深度学习的方法的效率。这项研究可以为建筑材料的大数据驱动设计的快速机械表征提供新的灵感。

With the achievement on the additive manufacturing, the mechanical properties of architectured materials can be precisely designed by tailoring microstructures. As one of the primary design objectives, the elastic isotropy is of great significance for many engineering applications. However, the prevailing experimental and numerical methods are normally too costly and time-consuming to determine the elastic isotropy of architectured materials with tens of thousands of possible microstructures in design space. The quick mechanical characterization is thus desired for the advanced design of architectured materials. Here, a deep learning-based approach is developed as a portable and efficient tool to identify the elastic isotropy of architectured materials directly from the images of their representative microstructures with arbitrary component distributions. The measure of elastic isotropy for architectured materials is derived firstly in this paper to construct a database with associated images of microstructures. Then a convolutional neural network is trained with the database. It is found that the convolutional neural network shows good performance on the isotropy identification. Meanwhile, it exhibits enough robustness to maintain the performance under fluctuated material properties in practical fabrications. Moreover, the well-trained convolutional neural network can be successfully transferred among different types of architectured materials, including two-phase composites and porous materials, which greatly enhance the efficiency of the deep learning-based approach. This study can give new inspirations on the fast mechanical characterization for the big-data driven design of architectured materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源