论文标题

有关双场理论中代数的双重方面的更多信息

More on Doubled Aspects of Algebroids in Double Field Theory

论文作者

Mori, Haruka, Sasaki, Shin

论文摘要

我们继续研究配备了双场理论(DFT)中配备C型机器的代数结构的两倍方面。我们发现,一个代数,Vaisman(公制或dft),前和前库代数的家族是由Drinfel的类似物构建的,由Drinfel的类似物构成。我们检查了这些代数歧管中这些代数的几何实现,这是对DFT中时空加倍的实现。我们表明,DFT中的强大限制对于实现加倍和非平凡的泊松结构是必要的,但可以放松某些代数。简要讨论了扭曲括号的加倍结构和与组歧管相关的结构。

We continue to study doubled aspects of algebroid structures equipped with the C-bracket in double field theory (DFT). We find that a family of algebroids, the Vaisman (metric or pre-DFT), the pre- and the ante-Courant algebroids are constructed by the analogue of the Drinfel'd double of Lie algebroid pairs. We examine geometric implementations of these algebroids in the para-Hermitian manifold, which is a realization of the doubled space-time in DFT. We show that the strong constraint in DFT is necessary to realize the doubled and non-trivial Poisson structures but can be relaxed for some algebroids. The doubled structures of twisted brackets and those associated with group manifolds are briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源