论文标题

时尚兼容性的自我监督的视觉属性学习

Self-supervised Visual Attribute Learning for Fashion Compatibility

论文作者

Kim, Donghyun, Saito, Kuniaki, Mishra, Samarth, Sclaroff, Stan, Saenko, Kate, Plummer, Bryan A

论文摘要

通过解决借口任务,许多自我监督学习(SSL)方法在学习语义上有意义的视觉表示方面已经成功。但是,SSL中的先前工作重点关注对象识别或检测等任务,该任务旨在学习对象形状,并假设功能应不变颜色和纹理等概念。因此,这些SSL方法在这些概念提供关键信息的下游任务上的表现较差。在本文中,我们提出了一个SSL框架,使我们能够学习颜色和纹理感知功能,而无需在培训期间需要任何标签。我们的方法包括三个自我监督的任务,旨在捕获先前工作中忽略的不同概念,我们可以根据下游任务的需求选择这些概念。我们的任务包括学习预测颜色直方图并区分每个实例中的无形本地贴片和纹理。我们使用DeepFashion使用多辆服装和店内服装检索来评估我们在时尚兼容性方面的方法,从而将先前的SSL方法提高了9.5-16%,尽管不使用标签,但在多伏式服装上的表现都超过了某些有监督的方法。我们还表明,我们的方法可用于转移学习,表明我们可以在一个数据集上训练,同时在另一个数据集上实现高性能。

Many self-supervised learning (SSL) methods have been successful in learning semantically meaningful visual representations by solving pretext tasks. However, prior work in SSL focuses on tasks like object recognition or detection, which aim to learn object shapes and assume that the features should be invariant to concepts like colors and textures. Thus, these SSL methods perform poorly on downstream tasks where these concepts provide critical information. In this paper, we present an SSL framework that enables us to learn color and texture-aware features without requiring any labels during training. Our approach consists of three self-supervised tasks designed to capture different concepts that are neglected in prior work that we can select from depending on the needs of our downstream tasks. Our tasks include learning to predict color histograms and discriminate shapeless local patches and textures from each instance. We evaluate our approach on fashion compatibility using Polyvore Outfits and In-Shop Clothing Retrieval using Deepfashion, improving upon prior SSL methods by 9.5-16%, and even outperforming some supervised approaches on Polyvore Outfits despite using no labels. We also show that our approach can be used for transfer learning, demonstrating that we can train on one dataset while achieving high performance on a different dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源