论文标题
通过时空关系学习,基于不确定性的交通事故预期
Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal Relational Learning
论文作者
论文摘要
交通事故的预期旨在尽早预测仪表板视频的事故,这对于担保自动驾驶系统至关重要。由于交通混乱和视觉提示有限,要预测早期观察到的帧将发生多长时间,这是巨大的挑战。大多数现有的方法都是为了学习与事故相关的事故预期的特征,同时忽略了它们的空间和时间关系的特征。此外,当前的确定性深度神经网络可能会过分自信,从而导致自动驾驶系统引起的交通事故的高风险。在本文中,我们提出了一个基于不确定性的事故预期模型,该模型具有时空关系学习。它依次预测了通过仪表板视频发生交通事故的可能性。具体而言,我们建议利用图形卷积和经常性网络进行关系特征学习,并利用贝叶斯神经网络来解决潜在关系表示的内在变异性。发现基于不确定性的排名损失可以通过提高关系特征的质量来显着提高模型性能。此外,我们收集了一个新的车祸数据集(CCD)进行交通事故预期,其中包含环境属性和事故原因注释。对公众和新编译的数据集的实验结果都显示了我们模型的最新性能。我们的代码和CCD数据集可从https://github.com/cogito2012/ustring获得。
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible, which is critical to safety-guaranteed self-driving systems. With cluttered traffic scenes and limited visual cues, it is of great challenge to predict how long there will be an accident from early observed frames. Most existing approaches are developed to learn features of accident-relevant agents for accident anticipation, while ignoring the features of their spatial and temporal relations. Besides, current deterministic deep neural networks could be overconfident in false predictions, leading to high risk of traffic accidents caused by self-driving systems. In this paper, we propose an uncertainty-based accident anticipation model with spatio-temporal relational learning. It sequentially predicts the probability of traffic accident occurrence with dashcam videos. Specifically, we propose to take advantage of graph convolution and recurrent networks for relational feature learning, and leverage Bayesian neural networks to address the intrinsic variability of latent relational representations. The derived uncertainty-based ranking loss is found to significantly boost model performance by improving the quality of relational features. In addition, we collect a new Car Crash Dataset (CCD) for traffic accident anticipation which contains environmental attributes and accident reasons annotations. Experimental results on both public and the newly-compiled datasets show state-of-the-art performance of our model. Our code and CCD dataset are available at https://github.com/Cogito2012/UString.