论文标题

失真梯度可塑性的断裂

Fracture in distortion gradient plasticity

论文作者

Fuentes-Alonso, S., Martínez-Pañeda, E.

论文摘要

在这项工作中,使用失真梯度可塑性来洞悉裂纹尖端前的材料变形。这也构成了采用NYE张量作为原始运动学变量的梯度可塑性理论的第一个断裂力学分析。首先,分析研究了裂纹尖端场的渐近性质。我们表明,存在一个内部弹性区域,与裂纹尖端相邻,弹性应变主导塑料菌株和库奇应力遵循线性弹性应力奇异性。通过使用新的数值框架进行详细的有限元分析来验证这一发现,该元素基于粘性构成定律,该定律能够以计算上有效的方式捕获依赖速率依赖性和速率独立的行为。数值分析用于进一步了解与常规J2可塑性相对于传统J2可塑性预测的应力升高,以及在模式I和混合模式断裂条件下塑性自旋的影响。发现NYE的张量贡献在提升塑料区域的应力方面具有较弱的影响,同时预测基于塑性应变梯度张量的本构选择相同的渐近行为。对X的较小敏感性,观察到塑料自旋引起的耗散的参数。最后,使用变形梯度可塑性和合适的高阶边界条件,以适当地对沿弹性塑料材料界面的脆性破坏现象进行适当建模。我们在尼伯族式界面上重现了范式实验,并表明应变梯度硬化和脱位阻塞的组合导致界面裂纹尖端应力大于理论晶格强度,在双层物质接口的存在下,在存在的情况下合理化了裂解。

In this work, distortion gradient plasticity is used to gain insight into material deformation ahead of a crack tip. This also constitutes the first fracture mechanics analysis of gradient plasticity theories adopting Nye's tensor as primal kinematic variable. First, the asymptotic nature of crack tip fields is analytically investigated. We show that an inner elastic region exists, adjacent to the crack tip, where elastic strains dominate plastic strains and Cauchy stresses follow the linear elastic stress singularity. This finding is verified by detailed finite element analyses using a new numerical framework, which builds upon a viscoplastic constitutive law that enables capturing both rate-dependent and rate-independent behaviour in a computationally efficient manner. Numerical analysis is used to gain further insight into the stress elevation predicted by distortion gradient plasticity, relative to conventional J2 plasticity, and the influence of the plastic spin under both mode I and mixed-mode fracture conditions. It is found that Nye's tensor contributions have a weaker effect in elevating the stresses in the plastic region, while predicting the same asymptotic behaviour as constitutive choices based on the plastic strain gradient tensor. A minor sensitivity to X, the parameter governing the dissipation due to the plastic spin, is observed. Finally, distortion gradient plasticity and suitable higher order boundary conditions are used to appropriately model the phenomenon of brittle failure along elastic-plastic material interfaces. We reproduce paradigmatic experiments on niobium-sapphire interfaces and show that the combination of strain gradient hardening and dislocation blockage leads to interface crack tip stresses that are larger than the theoretical lattice strength, rationalising cleavage in the presence of plasticity at bi-material interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源