论文标题
高通量材料的晶体学伴侣剂发现
Crystallography companion agent for high-throughput materials discovery
论文作者
论文摘要
通常使用X射线衍射(XRD),发现新结构和功能材料的发现是由相识别驱动的。自动化加速了XRD测量的速率,大大超过了XRD分析技术,这些技术保持手动,耗时,容易出错并且无法扩展。随着自主机器人科学家或自动驾驶实验室的出现,当代技术禁止XRD整合。在这里,我们描述了一个计算机程序,用于根据人工智能(AI)驱动的XRD数据的自主表征,以发现新材料。从结构数据库开始,我们使用物理准确的合成数据集训练集合模型,该数据集输出概率分类(而不是绝对),以克服传统神经网络中的过度自信。这种AI代理作为研究人员的伴侣,提高了准确性并节省了大量时间。它在各种有机和无机材料表征挑战上进行了证明。该创新直接适用于反设计方法,机器人发现系统,可以立即考虑用于其他形式的表征,例如光谱和配对分布函数。
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone, and impossible to scale. With the advent of autonomous robotic scientists or self-driving labs, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which output probabilistic classifications -- rather than absolutes -- to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering significant time savings. It was demonstrated on a diverse set of organic and inorganic materials characterization challenges. This innovation is directly applicable to inverse design approaches, robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.