论文标题
Rosenau方程的孤立波解的数值计算
Numerical Computation of Solitary Wave Solutions of the Rosenau Equation
论文作者
论文摘要
我们使用PETVIASHVILI迭代方法构建了Rosenau方程的数值孤立波解。我们首先总结了文献中有关孤立波解决方案的存在的理论结果。然后,我们基于PETVIASHVILI方法应用两种数值算法,以使用单或双功率定律非线性求解Rosenau方程。数值计算取决于有限计算域的统一离散化。通过一些数值实验,我们观察到该算法会迅速收敛,并且对初始猜测的非常通用的形式是可靠的。
We construct numerically solitary wave solutions of the Rosenau equation using the Petviashvili iteration method. We first summarize the theoretical results available in the literature for the existence of solitary wave solutions. We then apply two numerical algorithms based on the Petviashvili method for solving the Rosenau equation with single or double power law nonlinearity. Numerical calculations rely on a uniform discretization of a finite computational domain. Through some numerical experiments we observe that the algorithm converges rapidly and it is robust to very general forms of the initial guess.