论文标题
通过信号时间逻辑规范反向传播:将逻辑结构注入基于梯度的方法
Backpropagation through Signal Temporal Logic Specifications: Infusing Logical Structure into Gradient-Based Methods
论文作者
论文摘要
本文介绍了一种名为STLCG的技术,以使用计算图计算信号时间逻辑(STL)公式的定量语义。 STLCG提供了一个平台,该平台可以将逻辑规范纳入受益于基于梯度的解决方案的机器人问题问题。具体而言,STL是一种强大而表现力的形式语言,可以指定连续和混合系统生成的信号的空间和时间属性。 STL的定量语义提供了稳健性度量,即信号满足或违反STL规范的程度。在这项工作中,我们设计了一种系统的方法,用于将STL鲁棒性公式转化为计算图。通过这种表示,并利用现成的自动分化工具,我们能够通过STL鲁棒性公式有效地回落,从而使STL规格具有自然且易于使用的集成,并使用机器人技术中使用的许多基于梯度的方法。通过许多来自各种机器人应用的示例,我们证明了STLCG具有通用性,计算有效的,并且能够将人类域知识纳入问题制定中。
This paper presents a technique, named STLCG, to compute the quantitative semantics of Signal Temporal Logic (STL) formulas using computation graphs. STLCG provides a platform which enables the incorporation of logical specifications into robotics problems that benefit from gradient-based solutions. Specifically, STL is a powerful and expressive formal language that can specify spatial and temporal properties of signals generated by both continuous and hybrid systems. The quantitative semantics of STL provide a robustness metric, i.e., how much a signal satisfies or violates an STL specification. In this work, we devise a systematic methodology for translating STL robustness formulas into computation graphs. With this representation, and by leveraging off-the-shelf automatic differentiation tools, we are able to efficiently backpropagate through STL robustness formulas and hence enable a natural and easy-to-use integration of STL specifications with many gradient-based approaches used in robotics. Through a number of examples stemming from various robotics applications, we demonstrate that STLCG is versatile, computationally efficient, and capable of incorporating human-domain knowledge into the problem formulation.