论文标题
通过不确定性可视化对相关判断更新相关判断的一种贝叶斯认知方法
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations
论文作者
论文摘要
了解相关判断对于设计双变量数据的有效可视化很重要。先前关于相关感知的工作没有考虑到包括先前信念和不确定性表示在内的因素如何影响这种判断。当前的工作着重于在判断双变量可视化时不确定性通信的影响。具体来说,我们对用户进行建模,如何在看到有或没有不确定性表示的散点图后更新对可变关系的信念。为了建模和评估信念更新,我们提出了三项研究。研究1专注于以准确而直观的方式捕获用户信念的拟议的“线 +锥”的视觉启发方法。研究结果表明,我们提出的信念诱因方法可降低复杂性,并准确捕获用户对一系列双变量关系的不确定性。研究2利用``线 +锥体''的启发方法来衡量在看到有或没有不确定性表示的相关可视化时,不同变量集之间的关系的信念更新。我们将用户信念的变化与贝叶斯认知模型的预测进行了比较,这些模型为用户如何根据观察到的数据更新其对关系的先前信念提供了规范性基准。研究2的发现表明,不确定性通信的可视化条件之一导致用户对自己的判断比可视化更加自信,而没有不确定性信息。研究3基于研究2的发现并探讨双变量可视化与用户的先前信念一致或不一致时,探讨了信念更新的差异。我们的结果突出了结合不确定性表示的影响,以及测量与贝叶斯认知模型相关判断的信念更新的潜力。
Understanding correlation judgement is important to designing effective visualizations of bivariate data. Prior work on correlation perception has not considered how factors including prior beliefs and uncertainty representation impact such judgements. The present work focuses on the impact of uncertainty communication when judging bivariate visualizations. Specifically, we model how users update their beliefs about variable relationships after seeing a scatterplot with and without uncertainty representation. To model and evaluate the belief updating, we present three studies. Study 1 focuses on a proposed ''Line + Cone'' visual elicitation method for capturing users' beliefs in an accurate and intuitive fashion. The findings reveal that our proposed method of belief solicitation reduces complexity and accurately captures the users' uncertainty about a range of bivariate relationships. Study 2 leverages the ``Line + Cone'' elicitation method to measure belief updating on the relationship between different sets of variables when seeing correlation visualization with and without uncertainty representation. We compare changes in users beliefs to the predictions of Bayesian cognitive models which provide normative benchmarks for how users should update their prior beliefs about a relationship in light of observed data. The findings from Study 2 revealed that one of the visualization conditions with uncertainty communication led to users being slightly more confident about their judgement compared to visualization without uncertainty information. Study 3 builds on findings from Study 2 and explores differences in belief update when the bivariate visualization is congruent or incongruent with users' prior belief. Our results highlight the effects of incorporating uncertainty representation, and the potential of measuring belief updating on correlation judgement with Bayesian cognitive models.