论文标题

快速无线电爆发将用平方公里阵列检测到

Fast radio bursts to be detected with the Square Kilometre Array

论文作者

Hashimoto, Tetsuya, Goto, Tomotsugu, On, Alvina Y. L., Lu, Ting-Yi, Santos, Daryl Joe D., Ho, Simon C. -C., Wang, Ting-Wen, Kim, Seong Jin, Hsiao, Tiger Y. -Y.

论文摘要

快速无线电爆发(FRB)是神秘的神经外无线电信号。揭示其起源是现代天文学中的中心焦点之一。先前的研究表明,非重复和重复FRB的发生率分别可以通过宇宙恒星质量密度(CSMD)和星形形成率密度(CSFRD)来控制。正方公里阵列(SKA)是由于其高灵敏度和高角度分辨率而解决该主题的最佳未来工具之一。在这里,我们预测使用SKA检测到的FRB数量。与先前的预测相反,我们基于对其物理特性的最新观察性约束,包括光谱指数,FRB亮度函数及其红移的演变,分别估算了非重复和重复FRB的检测。我们考虑了CSMD或CSFRD后FRB光度函数的红移演变的两种情况。 At $z\gtrsim2$, $z\gtrsim6$ and $z\gtrsim10$, non-repeating FRBs will be detected with the SKA at a rate of $\sim10^{4}$, $\sim10^{2}$, and $\sim10$ (sky$^{-1}$ day$^{-1}$), respectively, if their luminosity函数遵循CSMD的演变。在$ z \ gtrsim1 $,$ z \ gtrsim2 $和$ z \ gtrsim4 $中,将以$ \ sim10^{3} $,$ \ sim10^{2} $ \ sim10^{2} $的速率检测到重复FRB的来源用CSFRD缩放其光度函数的演变。根据CSMD和CSFRD的假设,这些数字可能会更改约一个数量级。在所有情况下,SKA都将检测到丰富的FRB,这将进一步限制光度函数和数量密度的演变。

Fast radio bursts (FRBs) are mysterious extragalactic radio signals. Revealing their origin is one of the central foci in modern astronomy. Previous studies suggest that occurrence rates of non-repeating and repeating FRBs could be controlled by the cosmic stellar-mass density (CSMD) and star formation-rate density (CSFRD), respectively. The Square Kilometre Array (SKA) is one of the best future instruments to address this subject due to its high sensitivity and high-angular resolution. Here, we predict the number of FRBs to be detected with the SKA. In contrast to previous predictions, we estimate the detections of non-repeating and repeating FRBs separately, based on latest observational constraints on their physical properties including the spectral indices, FRB luminosity functions, and their redshift evolutions. We consider two cases of redshift evolution of FRB luminosity functions following either the CSMD or CSFRD. At $z\gtrsim2$, $z\gtrsim6$ and $z\gtrsim10$, non-repeating FRBs will be detected with the SKA at a rate of $\sim10^{4}$, $\sim10^{2}$, and $\sim10$ (sky$^{-1}$ day$^{-1}$), respectively, if their luminosity function follows the CSMD evolution. At $z\gtrsim1$, $z\gtrsim2$, and $z\gtrsim4$, sources of repeating FRBs will be detected at a rate of $\sim10^{3}$, $\sim10^{2}$, and $\lesssim10$ (sky$^{-1}$ day$^{-1}$), respectively, assuming that the redshift evolution of their luminosity function is scaled with the CSFRD. These numbers could change by about one order of magnitude depending on the assumptions on the CSMD and CSFRD. In all cases, abundant FRBs will be detected by the SKA, which will further constrain the luminosity functions and number density evolutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源