论文标题
积分域上的一维动力系统类型Delta
One-dimensional dynamical systems type delta over Integral Domains
论文作者
论文摘要
在本文中,定义了积分域上的一个自主微分方程类型。为此,我们将使用在积分域中具有系数的指数生成函数的Hurwitz扩展环上定义的自主环。我们还将使用Delta运算符,这些运算符在多项式上作用时,其表现就像衍生物,以及umbral conculus。作为Delta运算符的一个特定示例,我们拥有定义差方程的前向差异操作员。然后,三角形方程将概括为普通方程和差方程。
In this paper, autonomous differential equations type delta of order one on integral domains are defined. For this we will use the autonomous ring defined on the Hurwitz expansion ring of exponential generating functions with coefficients in an integral domain. We will also use delta operators, which behave like derivatives when acting on polynomials, along with Umbral calculus. As a particular example of a delta operator we have the forward difference operator that defines the difference equations. Then the delta-type equations generalize to the ordinary equations and to the difference equations.