论文标题

$ p \ equiv1 \ pmod {4} $又是van hamme's(H.2)超级企业的$ Q $ -Analogue(H.2)

A further $q$-analogue of Van Hamme's (H.2) supercongruence for $p\equiv1\pmod{4}$

论文作者

Wei, Chuanan

论文摘要

几年前,Long和Ramakrishna [Adv。数学。 290(2016),773--808]扩展了Van Hamme's(H.2)超级企业$ P^3 $案例。最近,郭[int。 J.数字理论,即]发现了$ q $ - $ pamakrishna公式的$ p \ equiv 3 \ pmod 4 $。在本说明中,$ q $ - $ p \ equiv 1 \ pmod 4 $的长木马公式是通过$ q $ whipple公式和中国剩余定理得出的副本多项式。

Several years ago, Long and Ramakrishna [Adv. Math. 290 (2016), 773--808] extended Van Hamme's (H.2) supercongruence to the modulus $p^3$ case. Recently, Guo [Int. J. Number Theory, to appear] found a $q$-analogue of the Long--Ramakrishna formula for $p\equiv 3\pmod 4$. In this note, a $q$-analogue of the Long--Ramakrishna formula for $p\equiv 1\pmod 4$ is derived through the $q$-Whipple formulas and the Chinese remainder theorem for coprime polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源