论文标题

在边缘网络中应用机器学习技术:一项全面的调查

Applying Machine Learning Techniques for Caching in Edge Networks: A Comprehensive Survey

论文作者

Shuja, Junaid, Bilal, Kashif, Alasmary, Waleed, Sinky, Hassan, Alanazi, Eisa

论文摘要

边缘网络是一个复杂而动态的计算范式,旨在将云资源推向最终用户,以提高响应能力并减少回程流量。用户移动性,偏好和内容受欢迎程度是边缘网络的主要动态功能。内容的时间和社会特征(例如观点和喜欢的数量)从全球角度估算内容的普及。但是,此类估计不应映射到具有特定社会和地理特征的边缘网络。在下一代边缘网络中,即5G和5G以上,可以应用机器学习技术来根据用户偏好,基于相似的内容兴趣的用户聚类,并优化缓存放置和替换策略来预测内容的流行,并提供了一系列关于网络状态的约束和预测。机器学习的这些应用可以帮助确定边缘网络的相关内容。本文调查了机器学习技术在边缘网络中网络中缓存的应用。我们调查了最新的最新文献,并根据(a)机器学习技术(方法,客观和特征),(b)缓存策略(策略,位置和替代品)以及(c)边缘网络(类型和交付策略)制定了全面的分类法。对分类法中确定的参数进行了对最新文献的比较分析。此外,我们辩论研究挑战和未来方向,以实现最佳的缓存决策以及在边缘网络中的应用。

Edge networking is a complex and dynamic computing paradigm that aims to push cloud resources closer to the end user improving responsiveness and reducing backhaul traffic. User mobility, preferences, and content popularity are the dominant dynamic features of edge networks. Temporal and social features of content, such as the number of views and likes are leveraged to estimate the popularity of content from a global perspective. However, such estimates should not be mapped to an edge network with particular social and geographic characteristics. In next generation edge networks, i.e., 5G and beyond 5G, machine learning techniques can be applied to predict content popularity based on user preferences, cluster users based on similar content interests, and optimize cache placement and replacement strategies provided a set of constraints and predictions about the state of the network. These applications of machine learning can help identify relevant content for an edge network. This article investigates the application of machine learning techniques for in-network caching in edge networks. We survey recent state-of-the-art literature and formulate a comprehensive taxonomy based on (a) machine learning technique (method, objective, and features), (b) caching strategy (policy, location, and replacement), and (c) edge network (type and delivery strategy). A comparative analysis of the state-of-the-art literature is presented with respect to the parameters identified in the taxonomy. Moreover, we debate research challenges and future directions for optimal caching decisions and the application of machine learning in edge networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源