论文标题

基于深度学习的负载平衡,以改善QoS朝6G

Deep Learning Based Load Balancing for improved QoS towards 6G

论文作者

Nimmalapudi, Vishnu Vardhan, Mengani, Ajith Kumar, Vuppula, Roopa, Pandya, Rahul Jashvantbhai

论文摘要

最近,深度学习取得了长足的进步,随着功能强大的计算机的可用性和用户友好的编程环境的出现。预计深度学习算法将完全在6G中提供大多数操作。深度学习可以成为正确解决方案的一种环境是将来的6G智能无线网络中负载平衡。负载平衡提出了一种有效的,具有成本效益的方法,可以提高数据过程能力,吞吐量和扩展带宽,从而增强网络的适应性和可用性。因此,提出了基于长期短期记忆(LSTM)深神经网络的负载平衡算法,通过该算法,基于地理交通分布的基础站的覆盖面积会发生变化,从而满足了对未来6G异质网络的需求。通过考虑三种不同的情况来评估LSTM模型性能,并提出了结果。在两个无线网络布局(WNL)中介绍并验证了负载差异系数(LVC)和负载系数(LF),以研究服务质量(QOS)和负载分布。提出的方法显示,WNL1,WNL2分别降低了LVC的98.311%和99.21%。

Deep learning has made great strides lately with the availability of powerful computing machines and the advent of user-friendly programming environments. It is anticipated that the deep learning algorithms will entirely provision the majority of operations in 6G. One such environment where deep learning can be the right solution is load balancing in future 6G intelligent wireless networks. Load balancing presents an efficient, cost-effective method to improve the data process capability, throughput, and expand the bandwidth, thus enhancing the adaptability and availability of networks. Hence a load balancing algorithm based on Long Short Term Memory(LSTM) deep neural network is proposed through which the coverage area of base station changes according to geographic traffic distribution, catering the requirement for future generation 6G heterogeneous network. The LSTM model performance is evaluated by considering three different scenarios, and the results were presented. Load variance coefficient(LVC) and load factor(LF) are introduced and validated over two wireless network layouts(WNL) to study the Quality of Service(QoS) and load distribution. The proposed method shows a decrease of LVC by 98.311% and 99.21% for WNL1, WNL2 respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源