论文标题
纠缠汉密尔顿频谱的分布
Distribution of entanglement Hamiltonian spectrum in free fermion models
论文作者
论文摘要
我们以数字研究了两个一维免费费米昂模型和典型的三维安德森模型中纠缠哈密顿特征值的分布。我们从数值上表明,该分布取决于系统的相位:在离域阶段中,它以很小的值为中心,在本地化阶段,分布的选择转向较大的值。因此,我们基于纠缠哈密顿特征值的分布,在不同阶段解释纠缠熵的行为。此外,我们提出了最小的纠缠汉密尔顿特征值作为相和相变点的表征(尽管它没有非常锐利地定位相变点),并且我们在上述模型中对其进行了验证。
We studied numerically the distribution of the entanglement Hamiltonian eigenvalues in two one-dimensional free fermion models and the typical three-dimensional Anderson model. We showed numerically that this distribution depends on the phase of the system: In the delocalized phase it is centered around very small values and in the localized phase, picks of the distribution goes to larger values. We therefore, based on the distribution of entanglement Hamiltonian eigenvalues, explain the behavior of the entanglement entropy in different phases. In addition we propose the smallest magnitude entanglement Hamiltonian eigenvalue as a characterization of phase and phase transition point (although it does not locate the phase transition point very sharply), and we verify it in the mentioned models.